Modeling Robustness Tradeoffs in Yeast Cell Polarization Induced by Spatial Gradients

نویسندگان

  • Ching-Shan Chou
  • Qing Nie
  • Tau-Mu Yi
چکیده

Cells localize (polarize) internal components to specific locations in response to external signals such as spatial gradients. For example, yeast cells form a mating projection toward the source of mating pheromone. There are specific challenges associated with cell polarization including amplification of shallow external gradients of ligand to produce steep internal gradients of protein components (e.g. localized distribution), response over a broad range of ligand concentrations, and tracking of moving signal sources. In this work, we investigated the tradeoffs among these performance objectives using a generic model that captures the basic spatial dynamics of polarization in yeast cells, which are small. We varied the positive feedback, cooperativity, and diffusion coefficients in the model to explore the nature of this tradeoff. Increasing the positive feedback gain resulted in better amplification, but also produced multiple steady-states and hysteresis that prevented the tracking of directional changes of the gradient. Feedforward/feedback coincidence detection in the positive feedback loop and multi-stage amplification both improved tracking with only a modest loss of amplification. Surprisingly, we found that introducing lateral surface diffusion increased the robustness of polarization and collapsed the multiple steady-states to a single steady-state at the cost of a reduction in polarization. Finally, in a more mechanistic model of yeast cell polarization, a surface diffusion coefficient between 0.01 and 0.001 µm(2)/s produced the best polarization performance, and this range is close to the measured value. The model also showed good gradient-sensitivity and dynamic range. This research is significant because it provides an in-depth analysis of the performance tradeoffs that confront biological systems that sense and respond to chemical spatial gradients, proposes strategies for balancing this tradeoff, highlights the critical role of lateral diffusion of proteins in the membrane on the robustness of polarization, and furnishes a framework for future spatial models of yeast cell polarization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Spatial Sensing of Mating Pheromone Gradients by Yeast Cells

Projecting or moving up a chemical gradient is a universal behavior of living organisms. We tested the ability of S. cerevisiaea-cells to sense and respond to spatial gradients of the mating pheromone alpha-factor produced in a microfluidics chamber; the focus was on bar1Delta strains, which do not degrade the pheromone input. The yeast cells exhibited good accuracy with the mating projection t...

متن کامل

RESIP2DMODE: A MATLAB-Based 2D Resistivity and Induced Polarization Forward Modeling Software

Forward modeling is an integral part of every geophysical modeling resulting in the numerical simulation of responses for a given physical property model. This Forward procedure is helpful in geophysics both as a means to interpret data in a research setting and as a means to enhance physical understanding in an educational setting. Calculation of resistivity and induced polarization forward re...

متن کامل

Modeling Yeast Cell Polarization Induced by Pheromone Gradients

Yeast cells respond to spatial gradients of mating pheromones by polarizing and projecting up the gradient toward the source. It is thought that they employ a spatial sensing mechanism in which the cell compares the concentration of pheromone at different points on the cell surface and determines the maximum point, where the projection forms. Here we constructed the first spatial mathematical m...

متن کامل

A Predictive Model for Yeast Cell Polarization in Pheromone Gradients

Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predic...

متن کامل

Negative Feedback Enhances Robustness in the Yeast Polarity Establishment Circuit

Many cells undergo symmetry-breaking polarization toward a randomly oriented "front" in the absence of spatial cues. In budding yeast, such polarization involves a positive feedback loop that enables amplification of stochastically arising clusters of polarity factors. Previous mathematical modeling suggested that, if more than one cluster were amplified, the clusters would compete for limiting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008